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Abstract. We review recent progress at AMRDEC in 
establishing an information-theoretic basis for designing 
efficient signal sources using unstable nonlinear 
electronic oscillators. Such oscillators appear to be 
generally useful in ranging and communications, 
particularly when used in a chaotic mode. Their primary 
advantages lie in their tremendous natural bandwidth and 
simplicity of construction. We show that the dynamics of 
these novel devices can be modeled as an information 
source of discrete symbols with fixed transition rules. 
Applications involving the control and synchronization of 
chaotic oscillators are discussed from this vantage point.  
 

1. INTRODUCTION 
 

Nonlinear dynamical systems offer a completely new 
paradigm for building efficient, low-cost ultra-wideband 
electronic oscillators. The objective of this research is to 
develop an information theoretic foundation to nonlinear 
dynamical processes—particularly as a basis for 
controlling and synchronizing signal sources in next 
generation ranging and communication systems. 
Currently, applications of complex nonlinear phenomena 
such as chaos are not developed from any basic theory, 
but instead, are assembled from the results of ad hoc 
experiments. Consequently, there is no systematic way of 
engineering chaotic systems to do useful tasks or compare 
their potential with existing technologies. Our solution to 
this problem is to bridge the gap between nonlinear 
dynamics and communication theory. Describing 
nonlinear dynamics in familiar communication theory 
allows us to make precise statements about the 
applicability of nonlinear dynamics to specific problems. 
 

2. CHAOS AND INFORMATION 
 

The most intriguing aspect of chaotic electronic 
oscillators is that they can be extremely simple devices 
and yet produce very complex noise-like waveforms. 
Fig.1 shows a simple chaotic circuit based on an LC tank 
coupled to nonlinearity. Also shown is a representative 
phase portrait taken from an actual circuit. The non-
repeating nature of chaotic waveforms causes them to fill 
in the available phase space and to be spectrally 
broadband. Using this architecture with lumped 
components one can generate a chaos with a bandwidth of 
hundreds of megahertz. Such waveforms have ideal 

thumbtack ambiguity functions, which make them well-
suited for ranging (Ying, 1998).  
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Fig. 1. High-level schematic of a simple chaotic LC 

circuit along with a representative  phase portrait taken 
from an actual circuit. The ‘N’ denotes a nonlinear 
element. 
 

A key feature of this behavior is that it exhibits 
nonzero Shannon entropy—that is, the waveforms contain 
information. We characterize this information by 
transforming the continuous chaotic process into an 
equivalent source of discrete symbols with certain 
transition rules (Collet, 1980). For systems of the type 
shown in Fig.1, this process is well-understood and can be 
implemented with a 1-bit analog to digital converter at 
high speed. Voltage peaks which are greater than a 
specially chosen threshold are labeled ‘1’, while those 
below are labeled ‘0’, as shown in Fig.2. Amazingly, this 
process of converting a continuous chaotic waveform into 
a symbol sequence is invertible. The waveform can be 
completely recovered from the symbols through the use of 
a look-up table that relates symbol sequences to voltages.  
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Fig. 2. Transformation of a chaotic waveform to a 

sequence of symbols. Peaks above the threshold are 
labeled ‘1’ and those below with a ‘0’. 
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3. CONTROLLING CHAOS  
 
 An admissible symbol sequence can be converted to 
a waveform through the use of a controller. Because 
chaos is extremely sensitive to perturbations the controller 
need only apply exceedingly small impulses to achieve 
the desired behavior (Ott, 1990). An embodiment of this 
process known as dynamical limiting is shown in Fig.3 
(Corron, 2002).  Symbol sequences are inputted to the 
sequencer which converts them to the corresponding 
voltage. These voltages levels are used to bias a diode 
which then limits the voltages swings of the chaotic 
oscillators. When the sequence is admissible—that is, 
allowed by the dynamics of the oscillator—the result is a 
known waveform. In this way high-bandwidth digital 
information can be feed directly into a chaotic oscillator 
and converted to a high amplitude analog waveform in an 
efficient manner. 
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Fig. 3. Chaos control implemented using dynamic 

limiting. Symbols are converted to voltages in the 
sequencer and these voltage levels bias a diode which 
limits the oscillator. 

 
3. SYNCHRONIZING CHAOS 

 
 It is well-known that chaotic oscillators can 
synchronize when coupled together (Pecora, 1990). This 
phenomenon has important applications for auto-
synchronizing spread-spectrum systems, scrambling 
technology, and phased arrays for power-combining and 
beam steering. When the coupled chaotic oscillators are 
treated as sources of discrete symbols of information an 
almost exact correspondence can be made with Shannon’s 
mathematical theory of communication (Shannon, 1949). 
In doing so, we were able to predict, for the first time, 
fundamental relationships between detector precision 
(QD), channel capacity, lag (L), and synchronization 
quality (QS). Explicitly, we found that QS < QD + LH, 
where H is the Shannon entropy of the chaotic forcing and 
QD > H (Pethel, 2003). Importantly, this formula is valid 
even in the presence of negative lag (L < 0), i.e. the 
response leads the drive  (Voss, 2000). Effects like these 
allow the possibility of beam steering in arrays of ultra-
wideband emitters without the need for variable time 
delay elements (Corron, 2004).  
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Fig. 4 a) Shannon’s model of a communication 

system and b) the corresponding elements of 
unidirectional chaos synchronization. 
 

4. CONCLUSIONS 
 
 Certain classes of chaotic oscillators can be simply 
transformed into an equivalent information source of 
discrete symbols with fixed transition rules. This allows 
us to catalog all the available waveforms in terms of 
allowed symbol sequences, and control to any of them in 
an optimal manner. The use of these oscillators for 
producing ultra-wideband radio frequency waveforms for 
ranging and communications can thus be put on a firm 
theoretical basis. 
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